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Abstract
Tensor-based representations are being increasingly used to represent complex data types such as imaging data, due to their 
appealing properties such as dimension reduction and the preservation of spatial information. Recently, there is a growing 
literature on using Bayesian scalar-on-tensor regression techniques that use tensor-based representations for high-dimensional 
and spatially distributed covariates to predict continuous outcomes. However surprisingly, there is limited development on 
corresponding Bayesian classification methods relying on tensor-valued covariates. Standard approaches that vectorize the 
image are not desirable due to the loss of spatial structure, and alternate methods that use extracted features from the image 
in the predictive model may suffer from information loss. We propose a novel data augmentation-based Bayesian classifica-
tion approach relying on tensor-valued covariates, with a focus on imaging predictors. We propose two data augmentation 
schemes, one resulting in a support vector machine (SVM) type of classifier, and another yielding a logistic regression 
classifier. While both types of classifiers have been proposed independently in literature, our contribution is to extend such 
existing methodology to accommodate high-dimensional tensor valued predictors that involve low rank decompositions of the 
coefficient matrix while preserving the spatial information in the image. An efficient Markov chain Monte Carlo (MCMC) 
algorithm is developed for implementing these methods. Simulation studies show significant improvements in classification 
accuracy and parameter estimation compared to routinely used classification methods. We further illustrate our method in a 
neuroimaging application using cortical thickness MRI data from Alzheimer’s Disease Neuroimaging Initiative, with results 
displaying better classification accuracy throughout several classification tasks, including classification on pairs of the three 
diagnostic groups: normal control, AD patients, and MCI patients; gender classification (males vs females); and cognitive 
performance based on high and low levels of MMSE scores.

Keywords Alzheimer’s disease · Bayesian tensor modeling · Logistic regression · Support vector machines ·  
Neuroimaging analysis

Introduction

Neuroimaging studies stand as a cornerstone in contempo-
rary neuroscience, fundamentally transforming our com-
prehension of the intricate structure and function of the 
brain. These non-invasive visualization techniques have 
not only enriched our understanding of neurological disor-
ders but have also pioneered new frontiers in mental health 
research. Within the realm of risk prediction, neuroimag-
ing studies have emerged as an invaluable tool for identify-
ing individuals susceptible to neurological and psychiatric 
conditions. By discerning subtle abnormalities in brain 
structure and connectivity, researchers can now predict the 
risk of mental disorders (such as Alzheimer’s disease or 
dementia) with greater precision. This early identification 
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facilitates timely intervention and treatment, potentially 
offering an opportunity to provide improved health out-
comes and quality of life related to these disorders.

For example, neuroimaging studies have transformed 
the field of Alzheimer’s disease (AD) research, provid-
ing invaluable insights into the pathological mechanisms 
underlying this devastating neurodegenerative disorder 
(Chouliaras & O’Brien, 2023). By visualizing the brain’s 
structural and functional changes, neuroimaging tech-
niques have enabled researchers to track the progression 
of AD, identify early signs of the disorder, and differenti-
ate it from other causes of dementia. In particular, struc-
tural neuroimaging studies involving magnetic resonance 
imaging (MRI), have revealed the intricate patterns of 
atrophy in spatially distributed brain regions involved in 
memory and cognition that is a hallmark of AD (Frenzel 
et al., 2020). Neuroimaging features such as brain volume 
or cortical thickness that are derived from MRI scans can 
be used to provide quantitative assessments of disease 
severity and monitor disease progression over time. Impor-
tantly, such neuroimaging features can be embedded in 
machine learning algorithms in order to perform risk pre-
diction or early detection in AD. However, several major 
challenges are encountered when analyzing neuroimag-
ing data. For example, the brain imaging data is spatially 
dependent, high-dimensional and noisy, and it is often 
unclear how to identify suitable neurobiological markers 
for the mental disorder in the presence of heterogeneity.

In order to model such complex types of imaging data 
emerging at a rapid pace, several statistical and machine learn-
ing approaches have been proposed. Among them, classifica-
tion models using neuroimaging features have seen a rapid 
development (Rathore et al., 2017; Arbabshirani et al., 2017; 
Falahati et  al.,  2014). These approaches typically either 
vectorize the image, or extract informative summary fea-
tures from the image, to be used as covariates. For example, 
Plant et al. (2010) extracted the low-level-feature extraction 
algorithm with feature selection criterion to select most dis-
criminating features, that are then coupled with a clustering 
algorithm to group spatially coherent voxels to predict Alz-
heimer’s disease status. Ben Ahmed et al. (2015) proposed 
a multi-feature fusion algorithm used both extracted visual 
features from the hippocampal region of interest (ROI) and 
the quantity of cerebrospinal fluid (CSF) in the hippocampal 
region, and then applied a late fusion scheme to perform the 
binary classification of Alzheimer’s disease subjects using 
the MRI images. Going beyond AD classification, Griffis 
et al. (2016) implemented a voxel-based Gaussian Naive 
Bayes Classification of ischemic stroke lesions in individual 
T1-weighted MRI scans, where the authors separately created 
two feature maps as predictor variables for missing and abnor-
mal tissue to avoid including highly redundant information. 
Alternate types of shape-based image analysis that go beyond 

voxel-level analysis have also been proposed for prediction 
(Wu et al., 2022).

The above approaches, while useful, did not explicitly 
account for the spatial configuration of imaging voxels. 
Some exceptions include Markov random field (MRF) based 
methods that have been proposed in the prediction context 
(Smith & Fahrmeir, 2007; Lee et al., 2014). However, given 
that these are not equipped to perform dimension reduction, 
they may not be fully scalable to high-dimensional images 
with tens of thousands of voxels, and their performance in 
classification problems is unclear. In order to tackle the spa-
tial information in the image in the context of multi-class 
classification, Pan et al. (2018) proposed a penalized linear 
discriminant analysis (LDA) model using scalar and tensor 
covariates. Unfortunately, there is limited, if any, literature 
on Bayesian classification approaches based on imaging fea-
tures that account for the spatial information in the image. 
This is surprising, given the utility of Bayesian methods that 
can predict the probability of an observation belonging to 
two or more classes, which can be useful in the presence 
of measurement error or uncertainty regarding class labels 
in medical imaging studies (Morales et al., 2013; Behler 
et al., 2022). Existing Bayesian classification approaches 
that use vectorized features can be not readily adapted to 
our problem of interest involving Bayesian image-based 
classification, since it ignores the spatial structure of the 
image resulting in information loss and potentially poor 
model performance. Additionally, simply vectorizing the 
imaging features without an appropriate lower dimensional 
representation also introduces the curse of dimensionality 
since the number of voxels in the image is typically tens of 
thousands. Alternate approaches that rely on first extracting 
lower dimensional features from the image and subsequently 
using these features for classification, may involve an addi-
tional layer of information loss resulting from the feature 
extraction step, resulting in potential loss in accuracy.

Recently, there has been a growing literature on ten-
sor analysis in statistical modeling for imaging data that 
addresses some of the above concerns. Guhaniyogi et al. 
(2017) proposed a Bayesian tensor regression with a sca-
lar response on scalar and tensor covariates. Other tensor 
models include Bayesian response regression models that 
model the image outcome as a tensor object. Guhaniyogi and 
Spencer (2021) implemented a Bayesian Tensor response 
on scalar regression with an application of neuronal activa-
tion detection in fMRI experiments using both tensor-valued 
brain images and scalar covariates. Kundu et al. (2023) pro-
posed a longitudinal Bayesian tensor response regression 
model for mapping neuroplasticity across longitudinal visits. 
Billio et al. (2023) proposed a novel linear autoregressive 
tensor process model that introduces dynamics in linear ten-
sor regression and allows for both tensor-valued covariates 
and outcomes. Under the frequentist approach, Lock (2018) 
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proposed a penalized tensor on tensor regression using a 
(L2) Ridge penalty. Zhou et al. (2013) proposed a tensor 
regression model by extending generalized linear model to 
include tensor-structured covariates, where the rank-R PAR-
AFAC decomposition is assumed on the tensor parameters, 
with adaptive lasso penalties applied on the tensor margins. 
With the exception of the penalized GLM approach in Zhou 
et al. (2013), most existing tensor-based approaches in lit-
erature have mainly focused on linear regression models that 
can not be readily used for Bayesian classification.

In this article, we propose a data augmentation-based 
Bayesian classification approach that models binary out-
comes based on imaging covariates using a tensor-based 
representation. We consider two different data augmenta-
tion schemes resulting in two distinct Bayesian classifiers: 
a support vector machine (SVM) and a logistic regression 
model. While these classifiers have been extensively used in 
literature, the focus has been on using non-structured covari-
ates that ignore the spatial structure embedded in the image. 
Our specific interest is in Bayesian classification based on 
imaging predictors, where the images are registered across 
samples. Such a set-up is routinely used in neuroimag-
ing studies. Our main contribution is to develop a Bayes-
ian classification methodology based on high-dimensional 
tensor-valued predictors via low-rank decompositions of 
the coefficient matrix and using data augmentation. The 
low-rank PARAFAC decomposition assumed by the tensor 
model is able to preserve the spatial configuration of imag-
ing voxels, while overcoming the challenges arising from 
the high dimensionality of the image that can often contain 
tens of thousands of voxels. This results in considerable 
improvements in classification accuracy, as illustrated via 
rigorous numerical examples. In contrast to existing feature 
extraction approaches that first use a tensor decomposition 
or alternate schemes to obtain low level features to be sub-
sequently used in modeling (Sen & Parhi, 2021), the pro-
posed approach uses the full image as is in the classification 
model, but employs a low rank PARAFAC decomposition 
to model the high-dimensional tensor model coefficients. 
This ensures no information loss due to feature extraction, 
while simultaneously allowing for dimension reduction. We 
adopt the multiway shrinkage prior from Guhaniyogi et al. 
(2017) to model the tensor margins of the assumed rank-R 
PARAFAC decomposition, which shrinks non-significant 
parameters to near zero while inducing a minimal shrink-
age effect on the significant parameters. We develop effi-
cient Markov chain Monte Carlo (MCMC) algorithms for 
posterior inference that use data augmentation techniques. 
Simulation studies show significant improvements in clas-
sification accuracy, parameter estimation and feature selec-
tion compared to routinely used classification methods that 
use vectorized images. We further illustrate the advantages 
under our method via a detailed neuroimaging application 

using voxel-wise cortical thickness features data from Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) study, 
with the proposed Bayesian classifiers displaying better out-
of-sample accuracy consistently throughout several classi-
fication tasks, including classification on pairs of the three 
diagnostic groups: normal control, AD patients, and MCI 
patients; gender classification (males vs females); and cog-
nitive performance based on high and low levels of MMSE 
scores. We leverage cortical thickness as our neuroimaging 
feature of choice, since it is known to be a highly sensitive 
imaging biomarker for modeling neurodegeneration in AD 
(Weston et al., 2016; Fjell et al., 2015).

The rest of the paper is organized as follows: In Section 2, 
we propose the framework of the Bayesian tensor classification 
model with two types of data augmentation, specify the prior 
and hyperparameter choices, and list the posterior computation 
steps. In Section 3 we study the model performances through 
comprehensive simulation studies. In Section 4 we provide the 
results from the data analysis using the ADNI dataset. We con-
clude the manuscript with a discussion.

Methods

Brief Introduction to Tensors

Tensor-based models have gained recognition as a promising 
way to model neuroimaging data, due to their multifold advan-
tages. Tensors naturally inherit a multidimensional structure 
to represent complex data structures such as spatial features of 
a brain region. Additionally, tensor-based techniques achieve 
dimension reduction, which is particularly useful with neu-
roimaging data to tackle the challenges of p >> n in statis-
tical modeling. A tensor is a multi-dimensional array, with 
the order being the number of its dimensions. For example, a 
one-way or first-order tensor is a vector, and a second-order 
tensor is a matrix. A fiber resembles the idea of matrix rows 
and columns in higher dimensionality, which is obtained by 
fixing every dimension of a tensor except one. Similarly, a 
slice is defined by fixing every order of the tensor except 
two. Tensor decomposition is a mathematical technique that 
expresses a high dimensional tensor into the combination of 
lower dimensional factors. One type of tensor decomposition 
is the Tucker decomposition (Kolda & Bader, 2009), which 
decomposes a tensor into a core tensor and a set of matrices, 
one along each mode. It can be denoted as follows:

(1)

B = Λ ×1 A ×2 B ×3 ⋯ ×D D

=

R1∑

r1=1

⋯

RD∑

rD=1

�r1,…,rD
a(r1)◦⋯◦d(rD),
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where Λ is the core tensor, and A, B, D are the factor matri-
ces. The PARAFAC decomposition is a special case of the 
Tucker decomposition, where the core tensor Λ is restricted 
to be diagonal, and R1 = R2 = … = RD = R . The rank-R 
PARAFAC model can then be expressed as

where �1,… , �D , known as tensor margins, are vectors of 
length p1,… , pD , and where �1◦⋯◦�D is a D-way outer 
product of dimension p1 × p2 ×… × pD . It is essential to 
recognize that tensor margins can only be uniquely identi-
fied up to a permutation and a multiplicative constant unless 
we introduce additional constraints. However, the lack of 
identifiability in tensor margins does not create any compli-
cations for our scenario. This is because the tensor product 
is fully identifiable, which suffices for our primary objec-
tive of estimating coefficients. Consequently, we refrain 
from imposing extra identifiability conditions on the tensor 
margins, aligning with the principles in the Bayesian tensor 
modeling literature (Guhaniyogi, 2020). Furthermore, the 
PARAFAC decomposition dramatically reduces the number 
of coefficients from p1 ×… × pD to R(p1 +…+ pD) , which 
grows linearly with the tensor rank R and results in signifi-
cant dimension reduction. The appropriate tensor rank can 
vary depending on the specific application context and can 
be chosen using a goodness-of-fit approach.

Prior to applying the tensor model, the image’s voxels 
are transformed onto a regularly spaced grid, making them 
more suitable for a tensor-based approach. This mapping 
conserves the spatial arrangements of the voxels, offering 
notable advantages over a univariate voxel-wise analy-
sis or a multivariable analysis that vectorizes the voxels 
without considering their spatial arrangements. While the 
grid mapping might not preserve exact spatial distances 
between voxels, this has limited impact, as it can still 
capture correlations between neighboring elements in the 
tensor margins. Moreover, the tensor construction has the 
advantageous ability to estimate voxel-specific coefficients 
by leveraging information from neighboring voxels through 
the estimation of tensor margins with their inherent low-
rank structure. This feature results in brain maps which are 
more consistent and robust to missing voxels and image 
noise. Additionally, it can be conveniently used for reliable 
imputation of imaging features related to missing voxels. 
In contrast, voxel-wise analysis lacks the capacity to share 
information among neighboring voxels, treating voxel 

(2)B =

R∑

r=1

�
(r)

1
◦⋯◦�

(r)

D
,

coefficients as independent entities regardless of their spa-
tial arrangement. For more details on the advantages and 
characteristics of Bayesian tensor models, we refer readers 
to Kundu et al. (2023).

Loss‑function Based Classification

A loss function is a mathematical tool to quantify the differ-
ence between predicted values under a model and the actual 
observed data values. Loss functions are often used for 
finding optimal estimates of model parameters in machine 
learning and statistical modeling tasks for regression, classi-
fication, and more. In the Bayesian paradigm, loss functions 
translate to different types of likelihood that are combined 
with additional priors on the model parameters embedded 
in the loss function to obtain posterior distributions that are 
subsequently used for estimation and uncertainty quantifica-
tion. Although we motivate our approach by drawing con-
nections with loss functions, we note that our work is distinct 
compared to decision theoretic Bayesian approaches that use 
loss functions as a post-processing step after Markov chain 
Monte Carlo (MCMC) to derive optimal estimates. See, 
for example, Hahn and Carvalho (2015) and Kundu et al. 
(2019). In this article we focus, in particular, on two types of 
commonly used loss functions: the hinge loss represented as 
the support vector machine classifier, and the logistic regres-
sion loss, both of which employ high-dimensional images as 
covariates for classification.

Support vector machine (SVM) SVMs play a pivotal role 
in classification tasks, and their significance stems from 
their ability to handle complex decision boundaries with 
remarkable efficiency. SVMs work by finding an optimal 
hyperplane that separates the data points into two classes. This  
hyperplane is chosen to maximize the margin, which is the 
distance between the hyperplane and the closest data points. 
This helps to ensure that the SVM model is generalizable  
to new data, and protects against overfitting. SVMs are  
well-suited for both linear and non-linear classification, via 
using suitable kernel functions. This versatility makes SVMs 
applicable across various domains, from image recognition 
and natural language processing to bioinformatics - see  
Cervantes et al. (2020) for a review. Their robust performance, 
ability to manage high-dimensional data, and capacity to  
handle intricate relationships between features underscore 
their importance in tackling diverse and challenging  
classification problems in machine learning.
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Most SVM-based classifiers rely on point estimates with 
penalized approaches to tackle high-dimensional covariates 
(Peng et al., 2016; Dedieu, 2019). The SVM classifier uses 
the hinge loss function that takes the form

where y ∈ {−1, 1} is the binary outcome, f (⋅) is a linear or 
non-linear function of (potentially high-dimensional) covari-
ates x , with corresponding unknown parameters � that need 
to be estimated from the data, and additional tuning param-
eters �2 . See Fig. 1 for a visualization of the hinge loss func-
tion. Recently, Ma and Kundu (2022) generalized the hinge 
loss to a smooth hinge loss and derived provably flexible 
estimators in the presence of noisy high-dimensional covari-
ates in the SVM framework. Bayesian approaches for SVM 
based on a pseudo-likelihood approach were proposed origi-
nally by Polson and Scott (2011) and subsequently adopted 
for biomedical applications in Sun et al. (2018). In particu-
lar, the pseudo-likelihood can be represented as a location-
scale mixture of normals with latent variable � as

where Li represents the contribution corresponding to the 
ith sample. The above representation essentially uses data 
augmentation techniques, introducing a latent variable � 
which, when marginalized over, gives back the hinge loss 
function. Such a latent variable representation enables an 
efficient Gibbs sampler for posterior inference, which will 
be described in Section 2.4 below.

(3)L(y ∣ �) =
1

�2
max(1 − yf (x;�), 0) + R,

(4)

L =

n�

i=1

Li(yi ∣ xi, �, �
2) =

n�

i=1

� 1

�2
exp{−

2

�2
max(1 − yif (x;�), 0)}

�

= ∫
∞

0

n�

i=1

1

�
√
2��i

exp(−
(1 + �i − yif (x;�))

2

2�i�
2

)d�i,

Logistic regression classifier Logistic regression is a power-
ful and versatile machine learning algorithm that is widely 
used in diverse applications, including medical diagnosis, 
fraud detection, customer segmentation, marketing cam-
paigns, and recommendation systems. It is characterized by 
simplicity in the implementation and interpretability of the 
results, as the logistic regression coefficients can be under-
stood in terms of odd-ratios. In order to make this model scal-
able for high dimensional biomedical applications, penalized 
versions of logistic regression models have been proposed 
(Doerken et al., 2019; Devika et al., 2016).

The logistic loss function specifies a sigmoid type loss 
that takes the analytical form

where f (x;�) represents the contribution of the covariates to the 
logistic loss that is quantified via the unknown parameters � , to be 
estimated from the data. See Fig. 1 for a visualization of the sig-
moid loss function. The binary outcome variables y ∈ {0, 1} are 
assumed to follow a Bernoulli distribution, with the correspond-
ing probability function resembling the form L(y = 1 ∣ �) . Typi-
cally f (⋅) represents linear functions of covariates that facilitate 
straightforward interpretations for the model parameters, although 
non-linear logistic regression models have also been proposed 
(Tokdar & Ghosh, 2007). In the Bayesian paradigm, model fit-
ting and inference for logistic regression is often achieved using 
Polya-Gamma latent variables (Nicholas et al., 2013). A random 
variable X has a Polya-Gamma distribution with parameters b > 0 
and c ∈ R , denoted as X ∼ PG(b, c) if

(5)L(y = 1 ∣ �) = exp{f (x;�)}∕
(
1 + exp{f (x;�)}

)
,

(6)X
D
=

1

2�2

∞∑

k=1

gk

(k − 1∕2)2 + c2∕
(
4�2

) ,

Fig. 1  From left to right: hinge 
loss and sigmoid loss function
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where gk follows a Gamma distribution Ga(b, 1). The intro-
duction of the Polya-Gamma latent variable allows one to 
represent the binomial likelihood as mixtures of Gaussians. 
It can be shown that the logistic loss function can be recov-
ered by marginalizing out the latent Polya-Gamma latent 
variable using the following relationship

where � ∼ PG(b, 0) , and f (x;�) is a linear predictor in most 
cases. The above identity facilitates conjugate updates under 
a Gaussian prior, conditional upon the latent Polya-Gamma 
variable, as detailed in Nicholas et al. (2013). The full data 
augmented likelihood is given by the following expression:

where �i = yi − 1∕2 , b = 1 , �i ∼ PG(1, 0).

Priors

For our implementation, we consider the widely used linear 
predictor using the relationship

where Xi and zi denote the imaging predictors and the sup-
plemental (eg: demographic/clinical) features, respectively, 
for the ith sample, ⟨⋅, ⋅⟩ denotes the inner product operator, 
B denotes the tensor-valued coefficient matrix that quanti-
fies the effect of the image on the classification model, and 
� is a vector of dimension pz + 1 capturing the effects of the 
supplemental covariates. Furthermore, we assume 
B ∈ ⊗D

j=1
ℝ

pj , that is modeled under a PARAFAC decompo-
sition as in (2).

For the prior choice on the tensor margins, we adopt the 
multiway Dirichlet generalized double Pareto (M-DGDP) 
prior from Guhaniyogi et al. (2017), which shrinks small 

(7)

(
ef (⋅))

)y
(
1 + ef (⋅)

)b = 2−be𝜅𝜓 ∫
∞

0

e−𝜔𝜓
2∕2p(𝜔)d𝜔, b > 0, 𝜅 = y − b∕2,

(8)L =

n∏

i=1

(
efi
)yi

(
1 + efi

) =

n∏

i=1

2−1e�i�i ∫
∞

0

e−�if
2
i
∕2p(�i)d�i,

(9)fi = ⟨Xi,B⟩ + z
�
i
�,

coefficients towards zero while minimizing shrinkage of 
large coefficients. The prior can be expressed in hierarchical 
form on the tensor coefficient margins �(r)

j
 , j = 1,… ,D and 

r = 1,… ,R as:

where � ∼ Ga(a� , b�) is a global scale parameter, 
Φ =

(
�1,… ,�R

)
 follows a Dirichlet distribution that encour-

ages shrinkage to lower rank in the assumed PARAFAC  
decomposition with 

(
�1,… ,�R

)
∼ Dirichlet

(
�1,… , �R

)
 , and  

where Wjr = Diag (wjr,1,… ,wjr,pj
) are scale parameters that 

are margin-specific for each element and modeled under an 
Exponential distribution as wjr,k ∼ Exp(�2

jr
∕2) with �jr 

unknown and modeled as �jr ∼ Ga
(
a�, b�

)
 . Additionally, one 

can obtain

after marginalizing out the scale parameters wjr,k , that is, 
prior (10) induces a GDP prior on the individual margin 
coefficients which in turn has the form of an adaptive Lasso 
penalty as in Armagan et al. (2013). Overall, the flexibility 
in estimating Br =

{
�
(r)

j
;1 ≤ j ≤ D

}
 is accommodated by 

component-specific scaling parameter wjr,k and common rate 
parameter �jr , which shares information between margin ele-
ments and encourages shrinkage at the local scale. We com-
plete the prior specification by assuming a N(0,Σ0� ) as the 
prior on �.

MCMC Algorithms for Posterior Inference

For posterior inference, we implemented efficient MCMC 
algorithms that take advantage of data augmentation 
techniques. Algorithm 1 outlines the MCMC updates for 
the proposed Bayesian Tensor SVM model (BT-SVM), 
and Algorithm 2 illustrates the updating scheme for the 
the proposed Bayesian Tensor logistic regression model 
(BT-LR).

(10)�
(r)

j
∼ N

(
0,
(
�r�

)
Wjr

)
,wjr,k ∼ Exp

(
�2
jr
∕2

)
,

(11)�
(r)

j,k
∣ �jr,�r, �

iid
∼DE

�
�jr∕

√
�r�

�
, 1 ≤ k ≤ pj,
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Algorithm 1  MCMC steps for BT-SVM
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Algorithm 2  MCMC steps for BT-LR

Simulation Study

Data Generation

We illustrate the performance of our methods using several 
simulation settings and perform comparisons with competi-
tive approaches, based on various types of generated data 
sets involving several types of functional signals and with 
data generated from SVM and logistic loss functions. We 
considered four different types of signals for the tensor coef-
ficient B to generate the binary outcome, as defined below.

Scenario 1 In this setting, the tensor B is constructed from 
rank-R PARAFAC decomposition with rank R0 = 3 and 
dimension p = c(48, 48) . Each beta margin �(r)

j
 is generated 

from the independent binomial distribution Binomial(2, 0.2). 
After the construction of tensor, we set the maximal value 
of the tensor B cells to be 1.

Scenario 2 The tensor image is simulated by a rank-R PAR-
AFAC decomposition with rank R0 = 3 . Here, instead of 
generating the tensor margin from a known distribution, we 
manually set up each value of �(r)

j
.

Scenario 3 Instead of generating the 2D tensor images from 
a PARAFAC decomposition, the tensor coefficient B is set 
to be 1 for a rectangular area and 0 otherwise. The non-zero 
elements cover approximately 30 percent of the area.

Scenario 4 The tensor coefficient B is set to be 1 for the 
circular area and 0 otherwise. The non-zero elements cover 
approximately 10 percent of the area.

Scenario 5 (using real 2D brain image) We considered a 
simulated scenario that uses 2D cortical thickness images 
from AD and NC patients in ADNI-1 study (see Section 4). 
In addition to these brain images, we use MMSE scores 
(used to measure cognitive impairment) as covariates to gen-
erate synthetic binary responses under both SVM and logis-
tic link functions and simulated tensor coefficients. We 
selected three 2D cortical thickness slices (derived from the 
T1 weighted MRI scans and denoted as slices 20, 21, and 
22) from the normal control group and the Alzheimer’s dis-
ease group, with MMSE scores available. MMSE scores are 
treated as scalar covariates while the 2D cortical thickness 
slices are tensor covariates. The binary response is con-
structed under both the SVM and logistic loss functions. The 
true tensor coefficient B is constructed from a rank-R PAR-
AFAC decomposition with rank R0 = 2 , where each tensor 
margin �(r)

j
 is being pre-specified.

The top panel in Fig. 2 shows the true 2D tensor images, 
for the different scenarios. For each setting, we generated 
the tensor covariates X from standard normal distribu-
tion N(0, 1). For simplicity, we did not include non-tensor 
covariates in our simulation settings, i.e. we assumed the 
true � = (0,… , 0)� . Finally for each scenario, the binary 
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outcome Y was generated according to both the SVM and 
logistic loss function as follows. Denoting the linear pre-
diction as 𝜓 =< Xi,B > , the binary outcome is generated 
as Yi = 1 if 𝜓 > 0 and Yi = −1 otherwise, under the SVM 
loss, and from a Bernoulli distribution with probability 
p = 1∕(1 + exp(−�) under a logistic loss. Therefore a total 
of 8 scenarios are considered in our simulation set-up, and 
for each of these scenarios 10 replicates were generated.

Parameter Settings

We choose suitable values of hyperparameters in the prior 
distributions that yield good overall performance. For 
example, we set the parameters of the hyperprior on the 
global scale � to a� = 1 and b� = �R(1∕D) , where R is the 
rank in the assumed PARAFAC decomposition, and set 
�1 = … = �R = 1∕R . For the common rate parameter �jr , 
we set a� = 3 and b� = 2D

√
a�  . Note that under the SVM 

loss, the scaling parameter �2 is a fixed parameter that can 
be manually adjusted for maximal model performance. 
Several values of the tuning parameter �2 from 0.1 through 
10 are tested and we choose �2 = 6 . In order to decide the 
rank of the fitted model, we fit the proposed model using 
ranks 2-5 and choose the rank that minimizes the Deviance 

Information Criterion (DIC) scores. DIC measures the 
goodness-of-fit of a set of Bayesian hierarchical models 
adjusting for model complexity in a manner that penalizes 
more complex models.

Performance Evaluation

We report estimation accuracy in terms of the Root Mean 
Squared Error (RMSE) and correlation coefficient for point 
estimation of cell-level tensor coefficients. We also illustrate 
the classification accuracy by calculating misclassification 
error and the F1 score. Feature selection performances are 
evaluated by Sensitivity, Specificity, F1 score, and Matthews 
correlation coefficient (MCC). These metrics are defined as 
follows. Let �j, j = 1,… , J , be the vectorized tensor coeffi-
cients, with J =

∏D

k=1
pk the total number of cells in the tensor 

coefficient B . Further, define the following terms related to 
classification performance under the SVM classifier: (a) TP is 
the true positive, i.e. the number of predictions where the clas-
sifier correctly predicts the positive class as positive; (b) FP 
is the false positive, i.e. the number of predictions where the 
classifier incorrectly predicts the negative class as positive; (c) 
TN is the true negative, i.e. the number of predictions where 
the classifier correctly predicts a negative class as negative; 

Fig. 2  Row 1 from left: Simulated data with 48× 48 2D tensor images 
from Scenarios 1-4. Row 2: Recovered images for the 48× 48 2D 
tensor images using BT-SVM corresponding to 4 scenarios in row 

1. Row 3: Recovered images for the 48× 48 2D tensor images using 
BT-LR corresponding to 4 scenarios in row 1
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and (d) FN is a false negative, i.e. the number of predictions 
where the classifier incorrectly classifies a positive class as 
negative. For logistic classification, the above definitions also 
hold, but after replacing the negative class with zero class. 
The above definitions of TP/FP/TN/FN can also be adopted 
for feature selection performance such that the positive class 
corresponds to non-zero coefficients, and the negative/zero 
class refers to absent or zero coefficients.

Metrics for evaluating coefficient estimation perfor‑
mance These metrics include: (i) Root-mean-square error 

of � , denoted as RMSE(𝜃) =

�
∑J

i=1
(𝜃i−𝜃i)

2

J
 , that provides 

another measure of estimation accuracy; (ii) correlation 
coefficient between the true and estimated coefficients.

Metrics for evaluating classification performance These 
metrics include: (i) Mis-classification rate, defined as 

(FP+FN)

TP+TN+FP+FN
 ; and (ii) F1-score, defined as the harmonic 

mean between precision (i.e. TP/(TP+FP)) and recall or sen-
sitivity (TP/(TP+FN)). The expression of F1-score is given 
as TP

TP+(FP+FN)∕2
.

Metrics for evaluating feature selection performance These 
metrics include: (i) Sensitivity = TP

TP+FN
 ; (ii) Specificity = 

TN

TN+FP
 ; and (iii) MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

Results reported below were obtained by randomly 
splitting the data into training and test sets in the ratio 
70:30. The metrics for point estimation and feature selec-
tion performances were calculated using the training set 
data, while the metrics for classification performance 
were calculated based on the test set. We report below 
averaged values of the selected metrics across 10 repli-
cates. Two state-of-the-art classification methods are used 
as competing methods. The first is a penalized logistic 
regression model with lasso penalty, which is available in 
the R package glmnet (Friedman et al., 2010). The sec-
ond competing method is the L1-norm SVM model from 
the R package penalizedSVM (Becker et al., 2009; 
Bradley & Mangasarian, 1998). Both methods use a vec-
torization approach, where the tensor covariates are vec-
torized into scalar variables and then fit into the statistical 
models. Therefore they do not respect the spatial infor-
mation in the image. Additionally, we use a grid search 
algorithm and cross-validation to select the best tuning 
parameters prior to model fitting.

Results

We ran MCMC chains for 3,000 iterations, with 1,000 burn-
in iterations. The computation time varies depending on the 

rank and is expected to increase with higher ranks. It took 
around 19 minutes to run a single MCMC chain with rank 
2, and around 36 minutes with rank 4. A Geweke diagnostic 
(Geweke, 1991) was applied to examine for signs of non-
convergence parameters. We obtain the z-score from Geweke 
for each element of the coefficient matrix B . For the pro-
posed Bayesian tensor SVM model (BT-SVM), we observe 
the z-scores lie in the range (−1.96, 1.96) for 91 percent of 
the coefficient matrix elements. For the proposed Bayesian 
tensor logistic regression model (BT-LR), the z-scores lie in 
the range (−1.96, 1.96) for 79 percent, indicating that most 
chains have reached ergodicity.

Scenarios 1‑4 We report results for estimation and classifica-
tion accuracy, and feature selection in Tables 1, 2, 3, and 4 
corresponding to Scenarios 1-4. Specifically, Tables 1 and 2 
reflect results across all 4 scenarios when the binary outcome 
Y is generated from a SVM loss, while Tables 3 and 4 reflect 
the logistic type of loss. These results demonstrate that both 
the proposed methods (BT-SVM and BT-LR) consistently out-
perform competing penalized methods in terms of coefficient 
estimation, feature selection, and classification performance 
across all scenarios. When the binary outcome data is gener-
ated from SVM loss, the BT-SVM approach has superior coef-
ficient estimation (as evident from lower RMSE and higher 
correlation coefficient in Table 1) and improved classification 
accuracy (as evident from lower misclassification rate and 
higher F1-score in Table 1). Even when the data is generated 
from a logistic loss, the same trends hold, with the exception 
of Scenario 1 where the proposed BT-LR approach reports 
improved classification accuracy and comparable coefficient 
estimation, as evident from the results in Table 3.

Moreover, the proposed model with SVM loss (BT-SVM) 
generally performs worse than the corresponding model with 
logistic loss (BT-LR) in terms of feature selection, as evident 
from the results in Tables 2 and 4. In particular, the BT-LR 
approach almost always has considerably higher sensitivity 
compared to the BT-SVM model while having comparable 
or slightly lower specificity, even when the outcome data is 
generated under the SVM loss. This results in the BT-LR 
approach consistently having higher F1-score and higher or 
comparable MCC values for feature selection, when com-
pared with the BT-SVM approach, even when the outcome 
data is generated under the SVM loss.

Combining the above discussions, the BT-SVM model 
appears to generally show improved coefficient estimation 
and classification performance over its counterpart with 
logistic loss, regardless of which type of loss function was 
used to generate the outcome data. On the contrary, the 
BT-LR model appears to have improved sensitivity and com-
parable specificity compared to its counterpart with SVM 
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loss that translates to improved feature selection, regard-
less of which loss function is used to generate the outcome 
data. Figure 2 presents the coefficient matrix cell estimation 

using the proposed methods BT-SVM and BT-LR. From 
this Figure, it is evident that the proposed method is able to 
broadly recover the shapes of the 2D tensor B regardless of 

Table 1  Point Estimation and Out-of-sample Classification results for 
the four 2D tensor images portrayed in Fig. 2 top panel; Y generated 
from SVM loss

Scenarios Methods RMSE Corr.Coef. Mis. Class. F1-score

Scenario 1 LR w/ lasso 0.558 0.071 0.54 0.147
L1norm-

SVM
0.687 0.027 0.513 0.522

BT-SVM 0.489 0.442 0.260 0.764
BT-LR 0.504 0.383 0.342 0.689

Scenario 2 LR w/ 
Lasso

0.382 0.055 0.46 0

L1norm-
SVM

0.533 0.092 0.48 0.502

BT-SVM 0.246 0.874 0.149 0.837
BT-LR 0.277 0.794 0.204 0.778

Scenario 3 LR w/ 
Lasso

0.541 0.074 0.507 0.191

L1norm-
SVM

0.537 0.109 0.533 0.512

BT-SVM 0.412 0.810 0.197 0.823
BT-LR 0.439 0.733 0.238 0.781

Scenario 4 LR w/ 
Lasso

0.330 0.122 0.533 0.2

L1norm-
SVM

0.535 0.053 0.44 0.565

BT-SVM 0.225 0.773 0.200 0.819
BT-LR 0.262 0.614 0.272 0.752

Table 2  Feature selection results for the four 2D tensor images por-
trayed in Fig. 2 top panel; Y generated from SVM loss

Scenarios Methods Sens. Spec. F1-score MCC

Scenario 1 LR w/ lasso 0.031 0.984 0.057 0.046
L1norm-SVM 0.058 0.950 0.1 0.017
BT-SVM 0.070 0.999 0.130 0.213
BT-LR 0.214 0.938 0.313 0.225

Scenario 2 LR w/ Lasso 0.003 1 0.007 0.055
L1norm-SVM 0.021 0.985 0.037 0.016
BT-SVM 0.628 1 0.771 0.772
BT-LR 0.821 0.978 0.835 0.814

Scenario 3 LR w/ Lasso 0.025 0.981 0.047 0.019
L1norm-SVM 0.019 0.988 0.037 0.027
BT-SVM 0.192 1 0.32 0.377
BT-LR 0.517 0.987 0.668 0.626

Scenario 4 LR w/ Lasso 0.094 0.974 0.145 0.122
L1norm-SVM 0.020 0.984 0.034 0.009
BT-SVM 0.368 0.998 0.530 0.573
BT-LR 0.519 0.934 0.552 0.522

Table 3  Point Estimation and Out-of-sample Classification results for 
the four 2D tensor images portrayed in Fig. 2 top panel; Y generated 
from logistic regression loss

Scenarios Methods RMSE Corr.Coef. Mis. Class. F1-score

Scenario 1 LR w/ lasso 0.557 0.076 0.56 0.125
L1norm-

SVM
0.562 0.054 0.48 0.55

BT-SVM 0.493 0.495 0.274 0.745
BT-LR 0.490 0.445 0.247 0.767

Scenario 2 LR w/ 
Lasso

0.382 0.085 0.46 0

L1norm-
SVM

0.383 0.053 0.413 0.537

BT-SVM 0.245 0.859 0.179 0.804
BT-LR 0.260 0.732 0.252 0.734

Scenario 3 LR w/ 
Lasso

0.542 0.071 0.506 0.380

L1norm-
SVM

0.587 0.041 0.433 0.586

BT-SVM 0.412 0.804 0.178 0.842
BT-LR 0.421 0.618 0.253 0.770

Scenario 4 LR w/ 
Lasso

0.331 0.131 0.467 0.557

L1norm-
SVM

0.542 0.058 0.467 0.557

BT-SVM 0.226 0.766 0.203 0.813
BT-LR 0.255 0.658 0.227 0.788

Table 4  Feature selection results for the four 2D tensor images por-
trayed in Fig. 2 top panel; Y generated from logistic regression loss

Scenarios Methods Sens. Spec. F1-score MCC

Scenario 1 LR w/ lasso 0.036 0.979 0.067 0.045
L1norm-SVM 0.023 0.982 0.044 0.020
BT-SVM 0.007 0.999 0.014 0.061
BT-LR 0.343 0.913 0.446 0.318

Scenario 2 LR w/ Lasso 0.017 0.999 0.034 0.098
L1norm-SVM 0.042 0.978 0.070 0.042
BT-SVM 0.590 0.999 0.736 0.742
BT-LR 0.801 0.948 0.764 0.736

Scenario 3 LR w/ Lasso 0.024 0.984 0.044 0.026
L1norm-SVM 0.010 0.981 0.020 -0.031
BT-SVM 0.180 1 0.300 0.361
BT-LR 0.475 0.926 0.573 0.483

Scenario 4 LR w/ Lasso 0.086 0.972 0.133 0.102
L1norm-SVM 0.040 0.983 0.067 0.051
BT-SVM 0.409 0.999 0.577 0.612
BT-LR 0.609 0.965 0.645 0.610
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whether the underlying signal is generated using the PARA-
FAC decomposition or not.

In contrast, the penalized competing methods (logistic 
regression with LASSO penalty and L1norm-SVM) illus-
trate poor estimation, feature selection, and out-of-sample 
classification performance. This is evident from the results 
in Tables 2, 4, where the competing approaches report 
notably low sensitivity, almost approaching zero. This low 
sensitivity reflects their inability to detect the true signals, 
resulting in poor coefficient estimation performance as evi-
dent from Tables 1 and 3, where the correlation coefficients 
between the true and estimated coefficients are often close 
to zero. For a more detailed perspective, Fig. 3 visualizes 
the estimated coefficients under two competing methods. 
The Figure reveals spatially disparate non-zero coefficients, 
indicating that the absence of spatial smoothing hampers 
the accurate estimation of true signals by these competing 
methods. Ultimately, the substandard feature selection per-
formance contributes to considerably inferior classification 
results, as demonstrated in Tables 1 and 3.

Scenario 5 For scenario 5 involving real brain corti-
cal thickness images as covariates, Table  5 provides 

parameter estimation for the tensor coefficients B and 
out-of-sample classification results under different meth-
ods when the outcome Y is generated from SVM loss, 
and Table 6 provides the corresponding results when Y 
is generated from the logistic loss. Overall, BT-SVM and 
BT-LR outperform the competing approaches consist-
ently across all slices, with BT-SVM achieving a mis-
classification rate < 0.2 and an F1-score > 0.8 across 
all slices with both types of responses. The coefficient 
estimation under the spatially informed tensor approach 
is also improved compared to penalized approaches, as 
evident from lower RMSE. This is reasonable, as the 
penalized methods fail to detect most of the true signals, 
resulting in zero estimates for most cells of the coeffi-
cient matrix B . On the other hand, BT-SVM and BT-LR 
recover the true signals adequately well (as evident from 
the lower RMSE and higher correlation coefficient val-
ues). However, they also result in false positives (they 
estimate voxels with zero effect sizes to be non-zero), 
due to the structure of tensor decomposition that results 
in spatial smoothing. This may occasionally result in 
slightly inflated coefficient estimation errors, especially 
under the BT-LR approach.

Fig. 3  Row 1 from left: Simulated data with 48× 48 2D tensor images 
from Scenario 1, Scenario 2, Scenario 3, and Scenario 4. Row 2: 
Recovered images for the 48× 48 2D tensor images using compet-

ing method L1norm-SVM for Scenario 1, Scenario 2, Scenario 3, 
and Scenario 4. Row 3: Recovered images for the 48× 48 2D tensor 
images using logistic regression with LASSO penalty
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Sensitivity Analysis

Guhaniyogi et al. (2017) set up a series of default values for 
the prior hyper-parameters for the Bayesian tensor regression 
model. Specifically, hyperparameter of the Dirichlet compo-
nent 

(
�1,… , �R

)
= � = (1∕R, ..., 1∕R) , a� = 3 , b� = 2D

√
a� , 

a� =
∑R

i=1
�i , and b� = �R(1∕D) are set as defaulted values to 

control the cell-level variance on tensor B . We conducted a 
prior hyperparameter sensitivity analysis by tuning each hyper-
parameter while fixing other hyperparameters. Table 7 displays 
the cell-level RMSE values of the tensor coefficient matrix B 
of dimension D = 2 and parafac rank-R, where for BT-SVM 
model, B is generated from Scenario 4; and for BT-LR model, 
B is generated from Scenario 3. The overall results reveal no 
strong sensitivity to the hyper-parameter choices under the 
selected ranges that point to a robust performance.

ADNI Data Analysis

Data Source and Pre‑processing

This study utilized the data obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI), which is a longitudi-
nal multicenter study launched in 2004 for the early detection 
and tracking of Alzheimer’s disease (AD). ADNI researchers 
collect multiple data types such as clinical, behavioral and 
genetic data, along with neuroimaging measurements such as 
magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET), and biospecimens. We use data from the ADNI 
1 study collected at baseline, consisting of T1-weighted MRI 
scans, cognitive measurements in terms of Mini Mental State 
examination (MMSE), and basic demographic data (age, gen-
der, year of education, APOE status) of 818 subjects. A more 
detailed description of the ADNI data is provided in Table 8.

The T1-weighted MRI images underwent processing 
through the Advance Normalization Tools (ANTs) registra-
tion pipeline (Tustison et al., 2014), where all images were 
registered to a template image to ensure consistent normaliza-
tion of brain locations across participants. The population-
based template was constructed based on data from 52 nor-
mal control participants in ADNI 1, originally from the ANTs 
group (Tustison et al., 2019). Notably, the ANTs pipeline 
includes the N4 bias correction step, addressing intensity dis-
cordance to inherently standardize intensity across samples 
(Tustison et al., 2010). It also employs a symmetric diffeo-
morphic image registration algorithm for spatial normaliza-
tion, aligning each T1 image with a brain image template 
to facilitate spatial comparability (Avants et al., 2008). Sub-
sequently, the pipeline utilized the processed brain images, 
estimated brain masks, and template tissue labels for 6-tissue 
Atropos segmentation, generating tissue masks for cerebro-
spinal fluid (CSF), gray matter (GM), white matter (WM), 
deep gray matter (DGM), brain stem, and cerebellum. Finally, 
cortical thickness measurements were derived using the 
DiReCT algorithm. The 3-D cortical thickness image was 
further downsampled to a dimension of 48 × 48 × 48 and 
divided into 48 2-D axial slices of dimension 48 × 48 , and 
a subset of these 2D slices were used for our analysis. The 
downsampling step reduces the dimension of the image, and 
also somewhat alleviates the sparsity of the cortical thick-
ness maps by consolidating adjacent voxels and presenting 
the average cortical thickness. A reduction of sparsity proves 
beneficial to fitting our Bayesian tensor model, and the same 
should hold of other commonly used statistical models.

Analysis Outline

We apply the proposed approaches to perform various clas-
sification tasks using data from the Alzheimer’s Disease 

Table 5  Simulated scenario 5: Cell Estimation of B and Out-of-sam-
ple Classification results for the three 2D cortical thickness slices; Y 
generated from SVM loss

Slices Methods RMSE Corr.Coef. Mis. Class. F1-score

slice 20 LR w/ lasso 0.253 0.141 0.229 0.686
L1norm-SVM 0.261 0.061 0.409 0.542
BT-SVM 0.222 0.550 0.156 0.823
BT-LR 0.253 0.429 0.182 0.784

slice 21 LR w/ lasso 0.252 0.159 0.278 0.636
L1norm-SVM 0.386 0.068 0.433 0.540
BT-SVM 0.202 0.626 0.140 0.843
BT-LR 0.236 0.566 0.196 0.782

slice 22 LR w/ Lasso 0.252 0.176 0.262 0.726
L1norm-SVM 0.276 0.055 0.448 0.526
BT-SVM 0.215 0.568 0.150 0.851
BT-LR 0.245 0.454 0.200 0.806

Table 6  Simulated scenario 5: Cell Estimation of B and Out-of-sam-
ple Classification results for the three 2D cortical thickness slices; Y 
generated from logistic loss

Slices Methods RMSE Corr.Coef. Mis. Class. F1-score

slice 20 LR w/ lasso 0.253 0.155 0.201 0.729
L1norm-SVM 0.268 0.058 0.411 0.557
BT-SVM 0.227 0.509 0.155 0.821
BT-LR 0.244 0.500 0.182 0.777

slice 21 LR w/ lasso 0.253 0.147 0.267 0.650
L1norm-SVM 0.259 0.021 0.456 0.511
BT-SVM 0.203 0.620 0.146 0.835
BT-LR 0.216 0.587 0.196 0.784

slice 22 LR w/ Lasso 0.252 0.161 0.275 0.728
L1norm-SVM 0.263 0.069 0.410 0.611
BT-SVM 0.213 0.582 0.149 0.858
BT-LR 0.231 0.445 0.205 0.806
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Neuroimaging Initiative (ADNI) study. Demographic infor-
mation of age, gender, years of education, APOE4 allele 
(0,1,2) and intracranial volume (ICV) are incorporated as 
scalar covariates, while 2D cortical thickness slices (derived 
from the T1 weighted MRI scans) are used as tensor covari-
ates. Since the different 2D brain slices are expected to 
contain varying amount of the brain cortical regions, it is 
important to choose these slices carefully. In particular, we 
would like to choose 2D slices such that they contain at 
least a certain portion of the brain cortex, in order to contain 
enough information to perform classification. Therefore, we 
present the analysis results from 7 different axial slices (we 
will denote them slices 19 to 25), each of which has cortical 
brain regions that cover at least 65% of the slice. We evaluate 
the classification performance of the proposed approaches 
and compare with the penalized logistic regression with 
lasso and L1-norm SVM as described in Section 3.

In particular, we assess the ability of the proposed classi-
fiers to differentiate between different types of disease phe-
notypes using the 2D imaging slices along with demographic 
information. In particular, we perform the following types of 

classification tasks corresponding to disease phenotypes: (i) 
normal control vs. AD patients; (ii) normal control vs. MCI 
patients; (iii) MCI vs. AD patients. In addition to the above 
tasks, we also perform (iv) gender classification (males vs 
females); and (v) cognitive performance classification based 
on high and low levels of MMSE scores. MMSE is commonly 
used clinically for checking cognitive impairment with a low 
value indicative of a cognitive decline. We stratify individuals 
into high vs low MMSE categories, depending on whether their 
MMSE scores are above the 70th percentile or below the 30th 
percentile of the MMSE distribution. The corresponding sam-
ple sizes in the high and low MMSE categories were 280 and 
249 respectively. For each classification task based on a given 
2D slice, the data is randomly split into training and test splits 
in the ratio 70:30, and 10 such splits are considered. The results 
are averaged over these 10 replicates and reported in Table 9.

Results

Table 9 reports the misclassification rate and f1-score for 
slices 19 through 25. The proposed approach under both 

Table 7  Prior hyperparameter 
sensitivity analysis

Hyperparameters RMSE Hyperparameters RMSE Hyperparameters RMSE

BT-SVM � = 1/9 0.224 a� = 3 0.225 a� = 1/3 0.225
� = 1/6 0.228 a� = 5 0.235 a� = 1/2 0.225
� = 1/3 0.226 a� = 7 0.227 a� = 1 0.226
� = 3

(−0.1) 0.227 a� = 10 0.230 a� = 2 0.231
BT-LR � = 1/9 0.418 a� = 3 0.413 a� = 1/3 0.428

� = 1/6 0.422 a� = 5 0.421 a� = 1/2 0.416
� = 1/3 0.419 a� = 7 0.413 a� = 1 0.416
� = 3

(−0.1) 0.421 a� = 10 0.415 a� = 2 0.420

Table 8  Summary of 
demographic variables and 
cognitive measurements under 
study

a Years of Education

NC (N=229) AD (N=188) MCI (N=401) Overall (N = 818)

Age Mean(SD) 75.86(5.02) 75.25(7.53) 74.74(7.35) 75.17(6.83)
Median 75.6 75.65 75.10 75.45
[Min, Max] [59.90, 89.60] [55.10, 90.90] [54.40, 89.30] [54.40, 90.90]

Yrs Eda Mean(SD) 16.06(2.85) 14.65(3.13) 15.64(3.03) 15.53(3.05)
Median 16 15 16 16
[Min, Max] [6, 20] [4, 20] [4, 20] [4, 20]

Gender Female 110(48.0%) 89(47.3%) 143(35.7%) 342(41.8%)
Male 119(52.0%) 99(52.7%) 258(64.3%) 476(58.2%)

APOE4 0 168(73.4%) 64(34.0%) 186(46.4%) 418(51.1%)
1 56(24.4%) 88(46.8%) 168(41.9%) 312(31.2%)
2 5(2.2%) 36(19.2%) 47(11.7%) 88(10.7%)

MMSE Mean(SD) 29.11(1.00) 23.27(2.03) 27.01(1.77) 26.74(2.67)
Median 29 23 27 27
[Min, Max] [25, 30] [18, 27] [23, 30] [18, 30]

log(ICV) Mean(SD) 14.24(0.10) 14.24(0.12) 14.26(0.11) 14.25(0.11)
Median 14.24 14.25 14.26 14.25
[Min, Max] [14.00, 14.53] [13.92, 14.56] [13.97, 14.56] [13.92, 14.56]
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Table 9  Classification on 
Gender, Disease phenotype, and 
High/Low MMSE scores with 
Demographic covariates

a Misclassification Rate

BT-SVM BT-LR LR-lasso L1norm-SVM

Mis. C.a F1-score Mis. C. F1-score Mis. C. F1-score Mis. C. F1-score

Female 
vs. 
Male

slice 19 0.288 0.764 0.317 0.728 0.337 0.750 0.422 0.636
slice 20 0.280 0.762 0.292 0.748 0.361 0.729 0.398 0.654
slice 21 0.296 0.752 0.3 0.756 0.357 0.75 0.447 0.595
slice 22 0.284 0.779 0.333 0.723 0.361 0.729 0.504 0.550
slice 23 0.256 0.789 0.325 0.733 0.373 0.657 0.390 0.684
slice 24 0.280 0.771 0.325 0.720 0.398 0.611 0.447 0.618
slice 25 0.256 0.801 0.345 0.719 0.369 0.674 0.455 0.591
NC. vs. 

AD
slice 19 0.327 0.669 0.277 0.715 0.388 0.595 0.452 0.564
slice 20 0.301 0.712 0.325 0.682 0.341 0.644 0.365 0.671
slice 21 0.341 0.656 0.309 0.697 0.341 0.638 0.404 0.564
slice 22 0.278 0.724 0.325 0.655 0.333 0.655 0.444 0.582
slice 23 0.277 0.720 0.309 0.698 0.293 0.654 0.436 0.444
slice 24 0.293 0.689 0.333 0.681 0.325 0.601 0.341 0.626
slice 25 0.269 0.746 0.309 0.677 0.301 0.660 0.396 0.510
NC. vs 

MCI
slice 19 0.280 0.8 0.312 0.768 0.344 0.732 0.414 0.686
slice 20 0.291 0.791 0.380 0.707 0.302 0.751 0.418 0.691
slice 21 0.338 0.761 0.365 0.718 0.333 0.731 0.440 0.688
slice 22 0.317 0.771 0.349 0.736 0.333 0.722 0.458 0.664
slice 23 0.322 0.776 0.349 0.766 0.365 0.696 0.455 0.586
slice 24 0.328 0.760 0.349 0.750 0.360 0.704 0.433 0.620
slice 25 0.291 0.792 0.354 0.729 0.333 0.720 0.465 0.582
AD vs. 

MCI
slice 19 0.296 0.805 0.355 0.746 0.334 0.763 0.395 0.690
slice 20 0.282 0.816 0.305 0.784 0.325 0.577 0.420 0.495
slice 21 0.287 0.815 0.338 0.781 0.350 0.759 0.412 0.691
slice 22 0.282 0.810 0.322 0.753 0.322 0.778 0.356 0.770
slice 23 0.271 0.825 0.344 0.751 0.384 0.723 0.401 0.702
slice 24 0.282 0.812 0.338 0.758 0.350 0.747 0.446 0.663
slice 25 0.291 0.808 0.389 0.721 0.339 0.765 0.463 0.613
High vs 

Low 
MMSE 
scores

slice 19 0.283 0.723 0.327 0.675 0.333 0.693 0.496 0.606
slice 20 0.295 0.715 0.358 0.655 0.333 0.674 0.471 0.534
slice 21 0.289 0.722 0.352 0.654 0.345 0.667 0.484 0.549
slice 22 0.295 0.710 0.339 0.686 0.377 0.634 0.471 0.460
slice 23 0.295 0.712 0.345 0.645 0.327 0.653 0.421 0.645
slice 24 0.289 0.720 0.333 0.675 0.321 0.622 0.459 0.587
slice 25 0.301 0.707 0.327 0.662 0.327 0.653 0.471 0.590
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loss functions almost always results in better classifica-
tion accuracy consistently across slices and classification 
tasks, compared to the penalized approaches. While both 
the two competing approaches have inferior performance 
compared to their Bayesian counterparts, the LR-Lasso 
generally performs slightly better than the L1norm-SVM. 
Among the three disease phenotype classification tasks, the 
highest accuracy is achieved for AD vs MCI classification 
under the BT-SVM approach, with f1-scores greater than 0.8 
across all 2D slices. The proposed approaches are also able 
to perform well for the NC vs MCI classification task with 
F1-scores consistently greater than 0.75, while the classifi-
cation performance for NC vs AD is slightly less impressive 
under all methods. We note that slice 23 provides the highest 
accuracy for both AD vs MCI and NC vs MCI classification 
tasks. With regards to the classification of non-imaging phe-
notypes, the gender classification performance is generally 
improved compared to cognitive performance classification, 
which is not surprising given the considerably lower train-
ing sample size for classifying the high versus low cohorts.

Clearly, there exist fluctuations in classification perfor-
mances across the different 2-D slices. This is not surprising 
because cortical thickness contained in each 2-D slice var-
ies depending on the sections of the slice. Further, different 
slices represent different brain regions that may have dif-
ferential effects on classifying phenotypic classes. Overall, 

these results demonstrate that our proposed Bayesian tensor 
approach offers consistent improvements for classifying 
Alzheimer’s disease and subjects’ demographic informa-
tion, by leveraging the spatial information in the images and 
incorporating dimension reduction that potentially avoids 
overfitting. Moreover, the unsatisfactory performance of the 
competing methods clearly illustrates the perils of ignoring 
the spatial correlations in high-dimensional images in classi-
fication tasks. This is not surprising, given that Lasso-based 
approaches are known to be affected by multicollinearity. 
While it is possible to explore alternate approaches such 
as principal component regression (PCR), such approaches 
lead to loss of interpretability that is not desirable in imag-
ing studies due to various reasons including the inability to 
perform feature selection.

Figure 4 shows brain maps that visualize the estimated 
coefficients of the brain cortical regions for the classification 
task of normal control vs. AD subjects based on BT-SVM 
and BT-LR, respectively. We up-sampled the 7 axial slices 
to full-dimension 3D images for visualization purposes. 
The 3D point estimate is then portrayed as a set of eight 
2D brain slices, overlaid with the estimated effects of the 
brain cortical regions > 0.1 . The brain maps show regions 
with the strongest coefficient estimates that are directly 
responsible for differentiating the phenotypic class labels. 
Multiple Regions of Interests (ROIs) are identified under 

Fig. 4  Top panel: Estimated 
effects of the brain cortical 
regions for classification task of 
AD vs. normal control subjects 
from BT-SVM, portrayed as a 
set of 2D brain slices overlaid 
with estimated points estimates 
of the model coefficients > 0.1 . 
Bottom panel: Estimated effects 
of the brain cortical regions for 
classification task of AD vs. 
normal control subjects from 
BT-LR, portrayed as a set of 
2D brain slices overlaid with 
estimated points estimates of 
the model coefficients > 0.1
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the proposed method that are also known to be implicated 
by the progression of AD. Across the 7 axial slices used 
for the classification analysis, the proportion of important 
voxels with estimated coefficients greater than 0.1 under 
BT-SVM and BT-LR was reported to be over 10% of the 
right hippocampus, the left and right caudate, the right supe-
rior parietal gyrus, and the right putamen. Additionally, over 
20% of the right insular cortex and right superior occipital 
gyrus regions report estimated coefficients > 0.1 under BT-
SVM and BT-LR.

These brain regions are well-known to be associated 
with cortical atrophy and/or cognitive impairment due to 
healthy aging as well as AD. Hippocampal atrophy due 
to aging as well as AD is widely established in literature 
(Bettio et al., 2017; Salat et al., 2011), and hippocampal 
degeneration is known to be associated with cognitive 
impairment (Xiao et al., 2023). Further, both left and right 
caudate are known to exhibit volume loss due to AD and they 
are also associated with cognitive functioning as measured 
by MMSE (Madsen et al., 2010). Similarly, parietal regions 
are known to have differential atrophy patterns based on 
cognitive status for individuals with early dementia (Jacobs 
et al., 2011). Additionally, the putamen is known to have 
a strong reduction in volume for AD individuals that also 
correlated with reduced cognitive performance (de Jong 
et al., 2008). Further, recent findings suggest that amyloidosis 
in putamen is a valuable imaging marker for AD (Yang 
et al., 2023). Similarly, the insula has been shown to carry a 
considerable pathological burden that may affect behavioral 
traits (Bonthius et al., 2005). Finally, significant cortical 
thickness and surface area atrophy was noticed in occipital 
lobes of the brain in AD individuals compared to normal 
controls and early MCI subjects (Yang et al., 2019).

Discussion

In this study, we proposed a Bayesian tensor classification 
approach based on high-dimensional neuroimaging data 
and scalar predictors, via data augmentation. The proposed 
approach essentially extends the literature on Bayesian tensor 
regression to classification problems that has the ability to 
perform inference and uncertainty quantification. The tensor 
structure is particularly suitable for neuroimaging data since 
it respects the spatial information of imaging voxels while 
keeping the number of parameters to be estimated at a man-
ageable level via a PARAFAC decomposition. With two data 
augmentation schemes implemented, we demonstrated the 
superiority of the proposed method via simulation and data 
application. In particular, comprehensive simulation stud-
ies concretely illustrate the advantages under the proposed 

approach, with each type of data augmentation having dis-
tinct advantages in classification, coefficient estimation 
and/or feature selection. We applied the proposed method to 
the ADNI dataset to classify disease phenotype, as well as 
gender and cognitive performance. Both data augmentation 
schemes showed consistently higher classification accuracy 
and improved feature selection than other penalized methods 
that vectorized the image. This showed the benefits of incor-
porating the spatial information in the image.

A potential limitation of the study is that we use 2D brain 
slices instead of using the whole 3D brain image. While 
using the full image may potentially result in improvements 
in accuracy, it typically requires higher rank tensors that may 
create computational bottlenecks due to a massive number 
of model parameters. In future work, we intend to propose 
more scalable versions of the proposed approach that can be 
used to incorporate high-dimensional 3D images for clas-
sification. We also propose to explore various prior choices 
for the tensor coefficients in order to enable stronger shrink-
age and thicker tails, with a view to improving the feature 
selection performance. Another potential limitation is that 
we did not consider potential heterogeneity across samples 
in our modeling scheme. In future work, we plan to account 
for the heterogeneity across samples via a mixture of tensors 
approach that is particularly relevant for AD studies. While 
we plan to investigate the above issues in future research, we 
believe that the proposed approach in this article provides 
a valuable Bayesian classification tool based on imaging 
covariates that fills an important gap in literature.
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